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Properties of resonant activation phenomena
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The phenomenon of resonant activation of a Brownian particle over a fluctuating barrier is revisited. We
discuss the important distinctions between barriers that can fluctuate among ‘‘up’’ and ‘‘down’’ configurations,
and barriers that are always ‘‘up’’ but that can fluctuate among different heights. A resonance as a function of
the barrier fluctuation rate is found in both cases, but the nature and physical description of these resonances
is quite distinct. The nature of the resonances, the physical basis for the resonant behavior, and the importance
of boundary conditions are discussed in some detail. We obtain analytic expressions for the escape time over
the barrier that explicitly capture the minima as a function of the barrier fluctuation rate, and show that our
analytic results are in excellent agreement with numerical results.@S1063-651X~98!11304-1#

PACS number~s!: 05.40.1j, 02.50.2r, 82.20.Mj
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I. INTRODUCTION

Noise-induced nonequilibrium phenomena in nonline
systems have recently attracted a great deal of attention
variety of contexts@1#. In general, these phenomena invol
a response of the system that is not only produced or
hanced by the presence of the noise, but that isoptimizedfor
certain values of the parameters of the noise. One examp
the phenomenon of stochastic resonance@2#, wherein the re-
sponse of a nonlinear system to a signal is enhanced by
presence of noise and maximized for certain values of
noise parameters. Another involves nonequilibrium ratch
wherein intrinsically unbiased Brownian motion in stochas
asymmetric potentials leads to a systematic drift mot
whose magnitude and even direction can be tuned by
parameters of the noise@3,4#. A third is the recent discovery
of a re-entrant noise-induced phase transition in a nonlin
coupled array, that is, a transition that is only observed
certain finite ranges of noise parameters@5#. A fourth such
phenomenon, the one of interest to us in this paper, has
called ‘‘resonant activation,’’ and was first identified by D
ering and Gadoua@6# and further studied by a number o
other authors. Here the mean escape time of a particle dr
by ~usually white! noise over a barrier of randomly fluctua
ing height exhibits a minimum as a function of the para
eters of the barrier fluctuations.

Our interest in this problem first arose because it seem
to us that for sufficiently simple potentials it should be po
sible to findanalytic dependences of the escape rate on
system parameters~or at least good approximations to them!
and, more specifically, that it should be possible to find a
lytic expressions for the parameter combinations that lea
the minimum in the escape rate. Some analytic results
available@6–11#, including those in the original work of Do
ering and Gadoua that apply to a very specific circumsta
discussed in more detail below. In general, however, m
available results are numerical@11#. Analytic results are
scarce, and usually apply only to one parameter regimeor
571063-651X/98/57~4!/3990~13!/$15.00
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another and are thus unable to explicitly capture the occ
rence of a minimum in the escape rate. A minimum in t
escape rate usually arises from these approximations onl
inference, and the approximations provide no way to loc
the minimum specifically, except as an intersection point
two unrelated approximations. They also do not provide
way to determine the dependence of the minimum on
system parameters.

In this paper we accomplish our goal, that is, we obtai
number of analytic results for moments of the first pass
time over a fluctuating barrier for the particular model sy
tem ~a triangular potential barrier subject to dichotomo
fluctuations! used in a number of studies of resonant activ
tion. In particular, we obtain analytic approximations th
explicitly capture not only the minimum in the escape ra
but that allow us to study the variability of the escape rate
parameter space, that is, the depth and width of this m
mum.

In the process of obtaining these results, we have a
accomplished a number of important clarifications on
nature of models that have been presented under the com
‘‘resonant activation’’ rubric, and on the nature of resona
activation itself. Some of these models in fact differ fro
one another in essential respects. We discuss these clar
tions and differences in some detail, and thus shed some
on the role played by the interplay of the white noise and
barrier fluctuations on the escape process. We anticip
some of our findings.

~i! A distinction must be made between situations
which the fluctuating barrier can be ‘‘up’’ or ‘‘down’’~i.e.,
can go from being a barrier to being flat or even a well!, and
situations in which there is always a barrier. Although res
nant behavior can be observed in all cases, the physical
ture underlying this behavior is different in different case

~ii ! Boundary conditions play an extremely important ro
in the problem.

~iii ! The qualitative physical description of the resonan
in the fluctuating barrier problem is as follows. When t
3990 © 1998 The American Physical Society
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57 3991PROPERTIES OF RESONANT ACTIVATION PHENOMENA
barrier fluctuates extremely slowly within a range 0,ymin
<y<ymax, the mean first passage time to the top of the b
rier is extremely long because it is dominated by those r
izations for which the barrier starts in the high position. T
mean first passage time is then proportional toeymax/D, where
D is the intensity of the white noise. Indeed, if the barr
fluctuation rate is smaller than the inverse of the mean
passage time to the highest barrier, the barrier is essent
quasistatic throughout the process. At the other extrem
the barrier fluctuates very rapidly, the mean first pass
time is determined by the average barriery0 , i.e., it is pro-
portional toey0 /D. Between these extremes, and over a bro
range of barrier fluctuation rates, passage over the ba
occurs primarily when the barrier is low, and the mean fi
passage time is then proportional toeymin /D. This dependence
is quite robust, and the prefactor determines the actual m
mum within this broad range.

~iv! This behavior does not require that the barrier fluc
ate; an oscillatory variation of the barrier height yields e
sentially the same results.

In Sec. II we provide a detailed statement of the re
nance activation problem. Section III discusses the anal
solution of the ‘‘up-down’’ case; we show that the resonan
flipping rate and the resonance activation in this case
independent of the white noise intensity. In Sec. IV the s
nificance of the white noise and of the boundary conditio
in this ‘‘up-down’’ problem are discussed in detail. Sectio
V deals with the case of barrier fluctuations when the barr
are always high. We obtain a single analytic expression
the mean first passage time that exhibits a minimum a
function of the barrier fluctuation rate and that in fact qua
titatively captures the correct behavior over most of para
eter space, as determined by comparison with numerica
sults. With this result we are able to determine the resona
frequency analytically, and also the range of barrier fluct
tion rates over which the mean first passage time is es
tially flat. In Sec. VI we discuss the case of a barrier th
oscillates ~rather than fluctuates!. This case also exhibits
resonant activation, although some of the quantitative de
of the problem are slightly modified. Finally, we conclud
with a summary and some final points in Sec. VII.

II. STATEMENT OF THE PROBLEM

Consider a process that evolves in a bistable potential
is driven by weak Gaussian white noise, so that the proc
is occasionally able to cross from one minimum of t
bistable potential to the other. If the parameters of the sys
are fixed in time, the rate at which the process crosses f
one well to the other under a variety of conditions is w
known ~e.g., the Kramers rate!. Suppose now that the heigh
of the barrier separating the two minima of the bistable
tential fluctuates in time. We wish to explore the effect of t
barrier fluctuations on the rate of passage of the process
one well to the other. More specifically, it is known th
there is an optimal barrier fluctuation rate that minimizes
passage time from one well to the other for given param
values@6–11#. This minimum identifies the phenomenon
resonant activation. We are interested in the analytic pro
erties of the resonant activation phenomenon. Note that
barrier fluctuations here are such that the energy differe
r-
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between the potential minima remains constant — only
barrier height fluctuates. This is to be contrasted with th
phenomenon of stochastic resonance, where the energy
ference is modulated by a small periodic signal.

We adhere to the overdamped regime, and hence the
cessy(t) evolves according to the Langevin equation

ẏ~t!52V8~y!2g8~y!h~t!1j~t!. ~1!

Herej(t) is zero-centered Gaussian white noise with cor
lation function

^j~t!j~t8!&52Dd~t2t8!. ~2!

One can think of the white noise as arising from a heat ba
in which case the diffusion coefficientD is proportional to
the bath temperatureT. Time is measured in units of th
friction coefficient, which has been set to unity in Eq.~1!.

The potentialV(y) is a bistable potential, typically with
isoenergetic minima. Doering and Gadoua@6# introduced the
triangular potential shown in Fig. 1. The potential barrier
defined by

V~y!5H y0y/L , 0<y,L

2y0y/L12y0 , L<y<2L,
~3!

and the potential rises to infinity aty50 and aty52L. In
the absence of the contributiong8(y)h(t) in Eq. ~1!, this
represents a standard problem where the ratek at which the
process crosses the barrier atx5L is related to the mean firs
passage timeT̃1 from the bottom of one of the wells, say th
one aty50, to the top of the barrier:k51/2T̃1 . To calculate
the mean first passage time one assumes a reflecting bo
ary condition aty50 and an absorbing boundary conditio
at y5L.

In the resonant activation problem we have, in additio
the contributiong8(y)h(t). Hereh(t) is a nonequilibrium
noise that, coupled tog8(y), causes the potential barrier t
fluctuate. It is a nonequilibrium noise because there is
dissipative contribution in the equation of motion associa
with this fluctuating term, and hence the system is open.
noiseh(t) is usually taken to be exponentially correlate
the most ubiquitous choices being Ornstein-Uhlenbeck no
@9–11# and Markovian dichotomous noise@8,11#. Here we
deal only with the latter:h(t) takes on the values61, and
the change from one to the other is distributed in time
cording to the exponential density function

f~t!5ge2gt, ~4!

FIG. 1. Schematic of the fluctuating potential barrier problem
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3992 57BOGUÑÁ, PORRÀ, MASOLIVER, AND LINDENBERG
so that the flipping rate of the dichotomous noise isg. The
fluctuating barrier is accomplished by picking forg(y) the
function

g~y!5H ay/L , 0<y,L

2ay/L12a , L<y<2L,
~5!

and zero otherwise. The addition of the random poten
termg(y)h(t) causes the potential barrier to switch betwe
the two valuesy15y01a andy25y02a.

We wish to calculate the rate at which the process cros
the point y5L, which in turn is related, as before, to th
mean first passage timeT̃1 from y50 to y5L when a re-
flecting boundary is located aty50 and an absorbing bound
ary aty5L. ~The distortions in the potential profile that ma
be caused by multiplicative noise, and the implications
the appropriate definition of an escape time, are well kno
and have been widely discussed in the literature; see,
Ref. @11#. The potentials used here do not exhibit such d
tortions.! In particular, we wish to establish analytically th
dependence ofT̃1 on the flipping rateg, and to identify the
flipping rate for whichT̃1 is a minimum.

Doering and Gadoua@6# calculated the mean first passa
time for this model in the absence of the potentialV(y), that
is, when the ‘‘barrier’’ flips between being a true barrier~of
height1a) to being a well (2a), and they obtained a reso
nance phenomenon, that is, the mean first passage time
0 to L exhibits a minimum at a particular value of the flip
ping rateg. Doering and Gadoua also presented simulat
results for the casey05a, that is, when the ‘‘barrier’’ flips
between being a true barrier~height 2a) and there being no
barrier. Bier and Astumian@7# considered the true barrie
case, that is, the case where there is always a barrier~in fact,
they tooky0@a), and obtained numerical results that show
resonance. Their analytic barrier crossing rate results are
tained separately for low flipping rates~smallg) and for high
flipping rates~large g). Neither result in itself exhibits a
minimum, although one can infer the existence of a mi
mum ~but not its dependence on the system parameters
also Ref.@11#! from their combination.

With this general statement of the problem we can
more precise about the results that we present in this pa
First, we consider the6a barrier-well case of Doering an
Gadoua, reproduce their analytic results for the mean
passage time, and also obtain analytic results for the reso
mean first passage time, the resonant flipping rate, and
second moment of the first passage time distribution.
argue that the6a barrier case represents a situation tha
completely different from the ‘‘true barrier’’ case consider
by Bier and Astumian. Both exhibit resonance behavior,
via different mechanisms. We explore these differences
interpret the Doering-Gadoua case on the basis of an e
simpler model. Furthermore, we obtain analytic results
the high barrier case considered by Bier and Astumian
yield anexplicit minimum in the mean first passage time a
function of the flipping rate. We present analytic results
the mean first passage time at resonance, for the reso
flipping rate, and we analyze the behavior of the syst
away from this point to assess how sharp this resona
might be.
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We shall present our analysis and results in terms of
dimensionless variables

t[tD/L2, x[y/L, T1[ T̃1D/L2, ~6!

and the dimensionless parameters

a[a/D, V0[y0 /D, l[gL2/D. ~7!

The differential equation for the mean first passage ti
in all cases considered in this paper is given by

d4T1

dx4
22V0

d3T1

dx3
1~V0

22a222l!
d2T1

dx2
12lV0

dT1

dx
52l,

~8!

with the boundary conditions

dT1

dx U
x50

50, ~9!

d2T1

dx2 U
x50

521 ~10!

at the reflecting boundary, and

T1~x51!50, ~11!

Fd3T1

dx3
22V0

d2T1

dx2
1~V0

22a2!
dT1

dx G
x51

5V0 ~12!

at the absorbing boundary. A brief description of how th
equation and boundary conditions arise is given in the A
pendix.

III. ANALYTICAL SOLUTION
OF THE DOERING-GADOUA MODEL

Consider the mean first passage time tox51 (y5L)
when the mean barrier height isV050. The solution as a
function of the initial positionx can in this case be given
analytically:

T1~x!5~x21!F2la2

m3

m2sinh~m!

a212l cosh~m!
2

l

m2
~x11!G

2
2a2

m4

sinh@m~x21!/2#

a212l cosh~m!
$a2 sinh@m~x11!/2#

12l sinh@m~x21!/2#12ml cosh@m~x11!/2#%,

~13!

where we have introduced the symbol

m5Aa212l. ~14!

This result has been previously reported for the particu
initial value x50 @6#. We know from Ref.@6# that T1(x
50)[T1 exhibits a resonance with respect tol; we wish to
establish the resonance flipping ratel res, and the behavior of
the mean first passage time at this resonance point.
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57 3993PROPERTIES OF RESONANT ACTIVATION PHENOMENA
The expression for the mean first passage time simpl
considerably when the dimensionless quantitym is large
(m@1), which is the physically interesting weak-white
noise regime. Indeed, the only way thatm could be small is
if a and l are small, that is, if~in dimensioned units! the
white noise intensityD is greater than the barrier heighta
and greater than 2gL2. The first condition renders the prob
lem uninteresting — if barriers are on average lower than
noise then one has an essentially free diffusion problem.
second condition requires a small system with a low flipp
rate, again a very specific situation that is not particula
interesting in this context. The customarily interesting phy
cal situation occurs when the white noise is weak compa
to the barrier height, that is, whena@1 and this in turn leads
to m@1. We use these two statements of the ‘‘interest
regime’’ interchangeably.

When m is sufficiently large, the following approxima
tions are valid:

coshm21; coshm; sinh m2m; sinh m;
1

2
em.

~15!

If, in addition,

l@a2e2a, ~16!

then the result simplifies even further, and one finally obta
the following much simpler approximate expression:

T1~x!;
a2~a222le2mx!

2l~a212l!2
1

a2~22x!

~a212l!3/2
1

l~12x2!

a212l

1O~a2e2m!. ~17!

It can be shown that this expression as a function ofl has a
minimum at a finite valuel res that to leading order is of the
form l res;a. This minimum is identified among the roots o
dT1(x)/dx50 as the one that coincides with the minimu
of the complete expression ofT1(x) @Eq. ~13!# as a→`.
Explicitly, following Ref. @6#, we setx50 to simplify the
analysis further:

T1;
~a222l!a2

2l~a212l!2
1

2a2

~a212l!3/2
1

l

a212l
1O~a2e2m!.

~18!

The extrema ofT1 as a function ofl obey the equation

l2

a2
~a212l!2

2l

a2
~a222l!2

1

2
~a212l!

2
6l2

a2
~a212l!1/250. ~19!

This equation can be solved perturbatively by takingl
;a(l01l1a211l2a22), an expansion consistent with th
fact that a@1. Once this expansion is substituted into E
~19!, the following result is obtained for the resonant flippin
rate as a function ofa:
s

e
e

g
y
i-
d

g

s

.

l res;
1

A2
a1S 11

3

A2
D 1

3

2S 31
7

A2
D 1

a
, a@1. ~20!

Note that the conditionl@a2e2a is thus satisfied. The value
of T1 at the resonant flipping rate is

T1~l5l res![Tres;~21A2!
1

a
2~413A2!

1

a2

1S 3

2
1

1

A2
D 1

a3
, ~21!

provideda is large. For small values ofl (l!a2e2a) one
readily finds from Eq.~13! with x50 that

T1;
1

2a2
ea2

l

2a4
e2a1

l2

2a6
e3a1OS l3

a6
e4aD , ~22!

whena@1.
In Fig. 2, the exact expression ofT1 is compared with

approximation~22! whenl→0, and with approximation~18!
whenl→`.

The second-order moment of the first passage time di
bution,T2 , also exhibits a resonance. However, the reson
frequency ofT2 does not coincide with that ofT1 . This
means that there does not exist a unique resonant frequ
or universal scaling associated with the first passage t
distribution. T2 can be calculated in a similar way~albeit
even more expansively! asT1 . However, the full expression
for T2(x) is too long to be included here. Instead, we on
reproduce the expression forT2 at x50 whena@1,

FIG. 2. Mean first passage time as a function of barrier fluct
tion rate for the Doering-Gadoua model. The barrier fluctuates
tween the up and down positions with slopesa and 2a, respec-
tively. Solid curve with circles: exact mean first passage ti
obtained numerically. Solid curve with squares: our analytical re
~18!. Dotted curve: the low-frequency approximation~22!. The pa-
rametera58.
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T2;
a4~a41a2l24l2!

l2m8
1

4a2~a22l2!

lm7
1

2a2~4a22l!

m6

1
20la2

3m5
1

5l2

3m4
1O~a4e2m!. ~23!

In Fig. 3, this approximate result is compared with the ex
expression forT2 whena58. The behavior of the resonan
frequencyl res,2 of T2 can be obtained from the expressio
for T2 whena→`. The calculation yields

l res,2;b0a1b11O~a21!, ~24!

where b0 is the positive real solution of the equation 5b0
4

110b0
326b02350. Numerical solution of this equatio

leads to the valueb050.825 724 . . . . With this value, the
coefficient b1 can also be evaluated numerically, and o
obtainsb153.560 57. Note thatl res,2.l res. Finally, T2 at
the resonant frequency behaves as 1/a2 whena→`:

T2~l res,2!;
c0

a2
1

c1

a3
1O~a24!, ~25!

with c0520.9521 . . . andc152104.244 . . . .
Equations~18!, ~20!, ~21!, and~22! are the main results o

this section — they give the mean first passage time a
function of the barrier height~or well depth! a, provideda
!ea, for all values ofl. The resonant behavior of the mea
first passage time as a function of the flipping rate of
barrier is clear and dramatic. It is useful to exhibit explicit
the limiting results in the original units so that the depe
dence on system parameters is clear. When the flipping
is large (l@a2 or g@a2/DL2) the mean first passage tim
from y50 to y5L grows as

FIG. 3. Second moment of the first passage time distribution
the Doering-Gadoua model as a function of barrier fluctuation r
with a58. Solid curve with circles: exact second moment obtain
numerically. Solid curve with squares: our analytical result~23!.
t

e

a

e

-
te

T̃1→ T̃white5
L2

2Deff
, ~26!

as seen from Eq.~18!. Here

Deff[D1
a2

2gL2
. ~27!

This is the well-known result for the mean first passage ti
from 0 to L for a freely diffusing particle with diffusion
constantDeff . In this limit the flipping barrier behaves sim
ply as an additional source of white noise of intens
a2/2gL2. At the other extreme, when the flipping rate is ve
low, l→0, the barrier never flips as the process moves fr
0 to L. If the barrier is initially ‘‘down’’ @h(0)521#, then
it remains down and the process is simply diffusively driv
toward the absorbing barrier by a constant force; asa/D
→`, the motion of the system becomes increasingly bal
tic. If the barrier is initially ‘‘up’’ @h(0)51#, on the other
hand, it remains up and the process moves between th
flective barrier aty50 and the absorbing barrier aty5L
against a constant opposing force. The mean first pass
time for such a process grows exponentially with the bar
height asD2ea/D/a2 @12#. In our calculations either initial
configuration is equally likely. The average of these two p
sibilities is the leading term in Eq.~22! ~the ballistic contri-
bution is negligible!:

T̃1→ T̃static5
L2D

2a2
ea/D. ~28!

Between these two limits lies a regime in which the me
first passage time is a minimum. The minimum value occ
at the resonant flipping rate whose leading term for la
values ofa/D is

g res;
a

A2L2
. ~29!

The leading contribution to the mean first passage time
this flipping rate is

T̃res;~21A2!
L2

a
, ~30!

and thus decreases with increasinga. This result has theL
dependence of a diffusive process, but the effective diffus
coefficient here isa and not D. Note that the product
g resT̃res5O(1).

IV. A SIMPLER MODEL SHOWING RESONANT
ACTIVATION

A surprising observation about the results of the Doerin
Gadoua model is that the resonant frequencyg res and the
mean first passage time at this resonant frequency,T̃res, do
not depend on the white noise intensityD to leading order in
a. This means that asa/D→`, the resonant properties be
come increasingly independent of the white noise intens
Indeed, the resonance therefore appears unaffected by
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57 3995PROPERTIES OF RESONANT ACTIVATION PHENOMENA
unrelated to the white noise; in particular, the minimum
the mean first passage time in the Doering-Gadoua m
appears not to arise from the coupling usually invoked
tween the white noise and the random dynamics of the
tential.

We have used somewhat equivocal language in this
scription because the situation is in fact somewhat sub
The resonance in the Doering-Gadoua model arises from
features:~1! the random dynamics of the potential~that is,
the random switching between barrier up and barrier do!
and, in particular, the initial average over these dynam
and~2! the nature of the reflecting boundary atx50. It is this
latter feature, subtly influenced by the white noise, tha
especially noteworthy: the resonance characteristics of
Doering–Gadoua result whenD→0 arenot reproduced by
simply settingD50 to begin with in the model equations.

To pursue this issue in more detail, let us consider
same model equations as did Doering and Gadoua but
in the absence of white noise from the outset. In place of
~1!, the system thus evolves according to the simpler Lan
vin equation

ẏ~t!52g8~y!h~t!. ~31!

The solution of this mean first passage time problem is m
easily found by splittingT̃(y) into two components@13#:
T̃1(y), the mean first passage time toy5L when h(0)5
11, andT̃2(y), the mean first passage time toy5L when
h(0)521. The convenience of this representation lies in
ease of expression of the boundary conditions in terms
T̃6.

The boundary condition~9! is completely equivalent to
the so called ‘‘immediate reinjection’’ condition@14,15#

T̃1~y50!5 T̃2~y50!. ~32!

In this case, whenever the system reaches the bounda
y50, the velocity immediately changes its sign, that is,
driving noiseh(t) changes its value from21 to 11. Note
that here the boundary condition directly affects the dyna
ics of the dichotomous barrier fluctuations since arrival at
boundary causes the noise to change its value. It is eas
ascertain that in terms ofT̃(y)5( T̃11 T̃2)/2, the ‘‘imme-
diate reinjection’’ reflecting boundary condition indee
translates to the Doering-Gadoua condition~9!, i.e.,

dT̃~y!

dy
U

y50

50. ~33!

With this boundary condition~together with the absorbing
condition aty5L), the mean first passage time fromy50 to
y5L if the initial valuesh(0)561 are equally probable is
@14#

T̃1,ir 5
gL4

a2
1

L2

a
. ~34!

Note thatT̃1,ir is a monotonically increasing function ofg
and thus exhibits no resonance. Clearly, this solution isnot
el
-
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e-
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the one approached by the Doering-Gadoua model whenD is
set to zero in the solution of the latter.

There is another way to think of a reflecting bounda
namely, to assume that the boundary only limits the region
movement of the system without interfering with the dyna
ics of the dichotomous barrier fluctuations. The dichotomo
noise evolves according to its own dynamics, and change
value at random times that are independent of where
processy(t) happens to be. Thus, if the system reaches
boundaryy50 when the noise happens to beh521, the
noise may retain this value according to its own statisti
properties. The process simply waits at the boundary, u
the noise switches toh51 in the natural course of events
We call this condition a ‘‘natural’’ reflecting boundary con
dition. This behavior is implemented via the followin
boundary condition for the mean first passage time com
nents:

T̃2~y50!5 T̃1~y50!1
1

g
, ~35!

or, in terms ofT̃(y),

dT̃~y!

dy
U

y50

52
L

a
. ~36!

The solution for the mean first passage time is now

T̃1,n5
gL4

a2
1

2L2

a
1

1

2g
. ~37!

It is easily seen thatT̃1,n has a minimum atg res5a/A2L2

@see Eq.~29!#. In Fig. 4, we plot a realization of the proces
y(t) for the two reflecting boundary conditions, the ‘‘imme
diate reinjection’’ and ‘‘natural.’’ From this figure, it is clea
that the two boundary conditions lead to different results
the mean first passage time.

The interesting point to note is that theD→0 limit of the
mean first passage time in the Doering-Gadoua mode
T̃1,n , that of the ‘‘natural boundary,’’ andnot T̃1,ir , although
the reflecting boundary condition used for the solution of
Doering-Gadoua model is Eq.~9!. In the Doering-Gadoua
model, no matter how weak the white noise, its effects
come dominant near the reflecting boundary. The white no
allows reversal of the trajectory even infinitesimally close

FIG. 4. Typical trajectories near the reflecting boundary for
two types of boundaries discussed in the text. Dashed lines: ‘‘
mediate rejection’’ boundary. Solid lines: ‘‘natural’’ boundary.
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3996 57BOGUÑÁ, PORRÀ, MASOLIVER, AND LINDENBERG
the reflecting boundary without triggering a flip of the ba
rier, thus removing the dynamical interference between
boundary and the dichotomous flipping process. There
therefore a profound difference between the situation
which white noise is present, albeit as weak as one wis
and the situation in which there is no white noise in the fi
place — the limitD→0 is discontinuous. In the Doering
Gadoua model there is a resonance in the mean first pas
time to absorption because, through the action of the w
noise~no matter how weak! the processcan delay ~increas-
ingly as the white noise intensity decreases! arrival at the
absorbing state if the barrier is up and does not flip of its o
dynamics. However, the characteristics of the resonant
ping rate and the mean first passage time at resonance d
explicitly depend on the intensity of the white noise. In F
5, we exhibit the two mean first passage times,T̃1,ir and
T̃1,n .

V. BIER-ASTUMIAN MODEL

The main conclusion that follows from the discussion
the preceding sections is that the resonant effect in the ‘‘to
model of Doering and Gadoua is not of the same nature
the resonant activation in systems where the activation
cess is exclusively due to the presence of white noise~i.e.,
nonzero temperature!. In order to study the resonant proce
in this latter situation, we return to the full model introduc
by Doering and Gadoua but now withV0.a, so that there is
always a barrier. This problem was first analytically stud
by Bier and Astumian@7#. The approximation developed b
these authors coincides with the so called kinetic approxi
tion introduced in Ref.@16#. The main limitation of this
method for the present purposes is that it leads to a mean
passage time that does not exhibit a minimum.

We have developed an approximation for the mean fi
passage time to the absorbing boundary for high aver

FIG. 5. Mean first passage time toL51 as a function of barrier
fluctuation rate for the two types of reflecting boundaries discus
in the text. Dashed curve with squares: ‘‘immediate rejectio
boundary. Solid curve with circles: ‘‘natural’’ boundary.
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barriers (V0@1) that does lead to a minimum, and hence c
be used to describe the resonance phenomenon analytic
We return to the Langevin equation~1! with Eqs. ~2!–~5!.
Now, however, we takey06a@D or, in dimensionless
quantities,V06a@1. The barrier thus flips between tw
large values.

The general solution to Eq.~8! is

T~x!5
1

V0
~x21!1A1~eq1x2eq1!1A2~eq2x2eq2!

1A3~eq3x2eq3!, ~38!

where the coefficientsqi are the three roots of the polyno
mial equation

q322V0q21~V0
22a222l!q12lV050, ~39!

and the constantsAi have to be found from the boundar
conditions~9!–~12!. It can be demonstrated that forV0.a
the roots of Eq.~39! are all real, two of them positive and th
other one negative. The full expressions for the constantAi
are complicated and too long to be included here. Howe
it is possible to derive shorter useful expressions for them
a series inl. In this case, the rootsqi can be written as

q152
2V0

V1V2
l1

4V0~a21V0
2!

~V1V2!3
l21O~l3!,

q25V21
l

V2
2

V1

2aV2
3

l21O~l3!, ~40!

q35V11
l

V1
1

V2

2aV1
3

l21O~l3!,

where

V6[V06a. ~41!

When these expressions are introduced into Eq.~38!, the
following result is obtained for the mean first passage time
orderl2:

T~x50!5
N1eV21N2eV11N3e2V0

D11D2eV21D3eV1
, ~42!

where the coefficients in the numerator are

N15V1
2 2lS V2V1

V0
2

V0
2

aV2
2

3aV1

V2
1

a2V1

V0V2

2
a~V025a!

V2
2 D ,

N25V2
2 2lS V2V1

V0
1

V0
2

aV1
1

3aV2

V1
1

a2V2

V0V1

1
a~V015a!

V1
2 D , ~43!

d
’
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N354lH 11lF ~2V021!

V1V2
2

4a2

~V1V2!2G J ,

and those of the denominator are

D152~V1V2!212l~a213V022V0V1V2!,

D252lFV1
2 1

l

aV2
2 ~aV1

2 V22V1V2
2 12a326a2V0!G ,

~44!

D352lFV2
2 1

l

aV1
2 ~aV2

2 V11V2V1
2 12a316a2V0!G .

This approximation is one order higher inl than the one
derived in Ref.@7#, which is equivalent to the so-called k
netic approximation@16#. The advantage of our approxima
tion is that it shows a minimum as function of the frequen
l. When V0@1 the resonant frequency can be calcula
explicitly:

l res;F a~e2a21!2V0
3

4e2a~11a2e2a1ae2a!
G 1/2

expS 2
V2

2 D , ~45!

and the associated minimal mean first passage time rea

Tres;
2

V2
2 1e22aV1

2
eV2. ~46!

The analytic expressions~42!–~46! are the principal re-
sults of this paper.

As we did in the Doering-Gadoua case, it is useful
exhibit explicitly various limiting results in the original unit
so that the dependence on system parameters is clarifie

When the flipping rate is large (l@a2 or g@a2/DL2),
result ~42! reduces to

T1→Twhite5
21a2/l

2V0
2

expS 2V0

21
a2

l
D , ~47!

or, in the original units,

T̃1→ T̃white5
L2Deff

y0
2

ey0 /Deff, ~48!

whereDeff is the effective diffusion coefficient defined in Eq
~27!. This is the appropriate and familiar result for activati
over a barrier of heighty0 with diffusion coefficientDeff . At
the other extreme, asl becomes small, the kinetic approx
mation @7,16# is valid and the mean first passage time~42!
reduces to

T1→Tkin5
2l1~k11k2!/2

k1k21l~k11k2!
, ~49!

where

k65V6
2 e2V6. ~50!
d

If l becomes so small that the time scale of barrier fluct
tions is much slower than the escape time, then this furt
simplifies to

T1→Tkin;
1

2S 1

k1
1

1

k1
D , ~51!

which is just the arithmetic mean associated with the t
possible initial barrier configurations@see the discussion sur
rounding Eq.~28!#. In the original units,

T̃1→ T̃kin5
L2D

2y1
2

ey1 /D1
L2D

2y2
2

ey2 /D. ~52!

Between these two limits lies the resonance regime wh
the mean first passage time is shorter than either the ‘‘w
noise’’ or ‘‘static noise’’ results. In the original units th
mean first passage time at resonance@Eq. ~46!# reads

T̃res;
2L2D

~y2
2 1e22ay1

2 !
ey2 /D;

2L2D

y2
2

ey2 /D, ~53!

where the second expression, valid ifa>1, serves to stress
the point that the resonant mean first passage time is es
tially the usual passage time over the lower of the two b
riers. It is not particularly instructive to exhibit the full ex
pression~45! for the resonance frequency in the origin
units, but, ifa>1 we can display the shorter expression

g res;
y0

3/2

2L2D1/2
e2y2/2D. ~54!

It should be noted that both the resonant mean first pas
and the resonant frequency depend on the intensity of
white noise, as does their product. This dependence app
in the exponents as well as prefactors.

A general feature of our solution and, more generally,
the resonant activation phenomenon is that with increas
barrier height the resonance phenomenon becomes less
less sharp: a long flat region develops around the reso
frequency, a fact that has been explicitly noted in ear
work @17#. Analysis of Eq.~42! makes it possible to estimat
analytic bounds of this flat region, which spans the range

V1
2 e22a1V2

2

4
e2V2!l!

V1V2

2V0
. ~55!

Thus, rather than stressing the resonance aspect of the p
lem, it might be more accurate to describe the time scale
the activation process as relatively insensitive to the par
eters of the system except in the limits of very low and ve
high barrier fluctuation rates. As noted above, if the barr
fluctuations are sufficiently slow, then an initially high ba
rier remains that way essentially forever, and the system
average crosses it before the barrier flips. Passage ove
higher barrier then dominates the mean first passage time
the other extreme, when the barrier fluctuations are v
rapid, crossing occurs essentially over the average bar
However, over most parameter ranges the mean first pas
time is essentially determined by passage over the lower
rier — the system can avoid passage over the higher ba
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by ‘‘waiting’’ for it to flip. Provided the waiting time is
shorter than the time it would take the system to cross
high barrier, flipping will occur first and the system wi
cross when the barrier is lower~unless flipping is too rapid!.
This process is most efficient~but not dramatically more
efficient — hence the flat behavior! at the resonance fre
quency.

In Fig. 6, the mean first passage time and the differ
approximations explained above have been plotted forV0
511 anda51. Our approximation clearly captures the res
nance behavior extremely accurately and for that matter
behavior of the mean first passage time over a broad rang
barrier fluctuation rates. Figure 7 again shows the mean
passage time, but now withV0515 anda51. This figure
serves to reconfirm the agreement of our results with
numerical ones, and also illustrates the flattening of the
gion around the resonance as the height of the barrier
creases. Figure 8 shows the resonance frequency as a
tion of the barrier height. Again, our approximation clea
captures the exact results extremely well for sufficiently h
barriers.

VI. ACTIVATION DRIVEN BY A SQUARE WAVE
FUNCTION

It is interesting to explore whether the resonant activat
phenomenon requires that the barrier fluctuate stochastic
or whether it also occurs when a noisy process crosse
barrier that changes periodically. Indeed, stochastic fluc
tion of the barrier is not a requirement.

To investigate the activation process when the barrier
cillates periodically between higher and lower values,
replace the dichotomous noiseh(t) in Eq. ~1! with a square

FIG. 6. Mean first passage time as a function of barrier fluct
tion rate for the Bier-Astumian model. The barrier fluctuates
tween the high valueV01a and the lower valueV02a, with V0

511 anda51. Solid curve with circles: exact mean first passa
time obtained numerically. Dotted curve: kinetic approximati
~49!. Dashed curve: white noise approximation~47!. Solid curve
with squares: our result~42!.
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wavew(t), a periodic function that alternately takes on t
values11 and21. The changes from one to the other occ
at a constant frequencyg. The period of the square wav
function is thus 2/g.

The Fokker-Planck equation describing the evolution
the probability for the system now includes a time-period
potential. The problem can be tackled analytically using F
quet theory. We simply state qualitatively the results that o
obtains with this exact approach, but then follow a simp
approach to arrive at some quantitative conclusions.

We continue our discussion in terms of dimensionle
variables and parameters. Exact solution of the prob
does, as noted above, also lead to resonant activation w
the barrier changes from higher to lower periodically, with
resonance behavior very similar to that of the stochastic c
In other words, the mean first passage time is large when
period of oscillation is very slow and also when it is ve
fast. As before, and for the same physical reasons, in
former case the mean first passage time is dominated by
high barrierV1 , and in the latter case it is determined by t
average barrierV0. Again as before, between these two lim
its there is a flat region~i.e., rather insensitive to the param
eter values! where the mean first passage time is determin
primarily by the lower barrierV2 . The only difference be-
tween this problem and the stochastic one lies in the deta
way in which the mean first passage time changes from
behavior to the other.

To find the mean first passage time at the slow-barr
modulation end of the problem~where the difference be
tween stochastic and periodic modulation is most p
nounced!, we recall that for a fixed barrier of heightV the
probability that the process hasnot yet crossed the barrier a
time t ~i.e., the survival probability at timet), is exponential
@18#, e2kt, where the crossing ratek5V2e2V @cf., Eq. ~50!#.
If the barrier is not fixed, but instead changes slowly fro

-
-

FIG. 7. Mean first passage time as a function of barrier fluct
tion rate for the Bier-Astumian model withV0515 anda51. Solid
curve with circles: exact mean first passage time obtained num
cally. Dashed curve: white noise approximation~47!. Solid curve
with squares: our result~42!.
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one value to the other at predetermined periodic time in
vals D[l21 with l&1, we can track the trajectory of th
system explicitly and write down an expression for the s
vival probabilityS(t) that the process has not yet crossed
barrier at timet. If initially the barrier isV1 and the time
t50 corresponds to the beginning of a period, then

S15Prob$T1.t%5q1
n q2

n e2k1~ t22nD!,

2nD,t<~2n11!D,
~56!

S15 Prob$T1.t%5q1
n11q2

n e2k2@ t2~2n11!D#,

~2n11!D,t<~2n12!D,

wheren50,1,2, . . . , andq1 andq2 are the probabilities
that a crossing event does not happen when the barriers
respectively,V1 and V2 . The assumption about the stati
tics of the crossing events yields

q65e2k6 /l. ~57!

The mean first passage timeT1 can then be calculated d
rectly as a moment of this probability. The survival probab
ity S2 and associated mean first passage timeT2 when the
barrier is initiallyV2 is similarly obtained. To compare mos
directly with the stochastic results, we assume that initia
the barrier is equally likely to beV1 or V2 . A short calcu-
lation then leads to the following result for the mean fi
passage time whenl&1:

T5
T11T2

2
5

1

2S 1

k1
1

1

k2
D1

1

2S 1

k1
2

1

k2
D q12q2

12q1q2
.

~58!

This result corresponds to the same level of approxim
tion as the kinetic result~49!. At very low frequencies,l
→0, the mean escape time is correctly given by an aver

FIG. 8. Resonance frequency as a function of average ba
height for the Bier-Astumian model witha51. Circles: exact nu-
merical results. Solid curve: our result~45!.
r-

-
e

re,

-

y

t

-

ge

of the escape time 1/k1 when the barrier isV1 and 1/k2

when the barrier isV2 . This kinetic approximation also doe
not exhibit a minimum because it does not behave corre
whenl→`; instead, it converges to the same value as
kinetic approximation~49!, that is, to (k11k2)/2.

In Fig. 9, approximation~58! to the mean escape time fo
the activation process driven by a periodic signal is co
pared with the escape time for the same system driven
dichotomous noise. The difference between the two is
ticeable in the decrease of the mean first passage time
increasing flipping rate — the dependence on the flipp
rate is considerably sharper in the periodic case than in
random case. A similar effect was observed recently in s
tems that exhibit coherent stochastic resonance@19#. The
minimum first passage time and resonance flipping rate
essentially identical in the two cases.

VII. CONCLUSION

We have revisited the problem of resonant activation, t
is, of the mean escape time of a particle driven by wh
noise of intensityD over a barrier of randomly fluctuating
height. The initial position of the particle isy50, and the
barrier is aty5L. A substantial recent literature@6–9,11,16#
deals with this problem, but the results to be found in t
literature are almost exclusively numerical. The distributi
of barrier fluctuations is typically taken to be either dichot
mous ~i.e., the barrier fluctuates between two values! or
Gaussian. The correlation function of the barrier fluctuatio
is usually assumed to be exponential and thus character
by a rate parameterg. The quantity of interest is the mea
escape timeT̃1 of the particle over the barrier as a functio
of g. It is observed thatT̃1 vs g exhibits a minimum, i.e.,
there is an optimal barrier fluctuation rate that minimizes
escape time of the particle. This minimum defines the re
nant activation phenomenon.

er FIG. 9. Mean first passage time as a function of barr
oscillation-fluctuation rate. Square symbols: kinetic approximat
for square wave barrier oscillations. Circles: fluctuating barr
Barrier parameter values:V0511 anda51.



u
tit
lie
nd
se

w

v
n

te
o
th
-
-
-
m
t

e

n
r

io
r
d
so
t
it
ie
ar
s
h
si
d
v-
in

rri

a
th
u

he

ith
m
-
as
ini-

eds
ysi-
flip-

ture,
e be-

in
he

as a
ob-
llent
lar

the
o
rd

the
sage

the
end

n to
ro-
ite
nce
ion

that
o-

er-
we
ne

s
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In this paper we have concentrated on dichotomous fl
tuations and on triangular potential barriers, so our quan
tive results are restricted to these cases. However, we be
that our results provide insights beyond these specific co
tions. In particular, they provide insights for barriers who
fluctuations are bounded between an upper valuey1 and a
lower value y2 . The applicability of our conclusions to
Gaussian fluctuations is therefore less certain, but below
will present some conjectures for this case as well.

A variety of approaches to the problem of the escape o
a fluctuating barrier of bounded variation provide excelle
and consistent analytic approximations to the escape ra
the limiting cases of very slow barrier fluctuations and
very fast barrier fluctuations. In the slow fluctuation case,
so-called ‘‘kinetic approximation’’@16# captures the behav
ior of the system very well. In the limit of very slow fluc
tuations (g→0) the barrier retains its initial height through
out the process. The mean first passage time for the ense
is then just the mean first passage time averaged over
initial distribution of barrier heights. For example, in th
dichotomous case if the height of the high barrier isy1 then
the mean escape time asg→0 is determined by the mea
escape time over this high barrier~the mean escape time ove
the lower barrier being negligible in comparison!:

T̃static;
L2D

2y1
2

ey1 /D. ~59!

This is the result captured, for instance, in Eqs.~28! and~52!.
Clearly, this result is determined in part by the assumpt
~generally made in the literature! that an initial average ove
an ensemble of barrier heights is appropriate. The entire
cussion that follows, including the occurrence of a re
nance, is dependent on such an initial average or at leas
the assumption that a finite fraction of realizations begin w
a barrier configuration that is higher than the lowest barr

At the opposite extreme, when the barrier fluctuations
very rapid (g→`), the main effect of the flipping barrier i
to increase the effective intensity of the white noise. T
escape then occurs over the average barrier, with a diffu
coefficientDeff which exceedsD by an amount determine
by the detailed distribution of barrier fluctuations. If the a
erage barrier height isy0.0, then the mean escape time
this limit is

T̃white;
L2Deff

y0
2

ey0 /Deff. ~60!

If the average barrier height is zero, then

T̃white5
L2

2Deff
. ~61!

These are the results captured in Eqs.~26! and ~48!. In any
case, the escape time is clearly smaller in the fast ba
fluctuation limit than in the slow barrier fluctuation limit.

In the literature, each of the above approximations h
been carried sufficiently far to deduce the behavior of
escape time as one moves away from the strict limits. Th
within the kinetic approximation, it can be shown that t
escape time decreases with increasingg. At the opposite
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limit, it can be shown that the escape time decreases w
decreasingg. These two results clearly point to a minimu
for some finite value ofg, but neither approximation is suf
ficient to actually capture the minimum. Our goal here h
been to develop a single approximation to capture this m
mum, and in this we succeeded.

However, we found in the process that a distinction ne
to be made between two cases that lead to a different ph
cal origin and parameter dependences for the resonant
ping rate and the associated escape time. In the litera
these two cases have been treated more or less as on
cause both involve dichotomous fluctuations, but they are
fact very different. One of these is the case in which t
‘‘barrier’’ fluctuates between an ‘‘up’’ or positive~barrier!
configuration of heighty15a and a ‘‘down’’ or negative
~valley! configuration of heighty252a. We have called
this the Doering-Gadoua model@6#. In the other case, the
barrier fluctuates between a high valuey15y01a and a
lower ~but still positive! value y25y02a. We have called
this the Bier-Astumian model@7#. For each model we found
a single expression for the mean first passage time that h
minimum, and we compared our results with exact ones
tained numerically. The agreement in both cases is exce
for almost the entire range of flipping rates, and in particu
over a broad range surrounding the resonance.

The distinctive aspect of the Doering-Gadoua model is
fact that part of the time the ‘‘barrier’’ is really a valley, s
that the particle can essentially roll rather than climb towa
L during these times. We found an explicit expression for
resonant flipping rate and the resonant mean first pas
time in this case:

g res;
a

A2L
, ~62!

T̃res;~21A2!
L2

a
. ~63!

The noteworthy fact about these results is that neither
resonant flipping rate nor the resonant escape time dep
explicitly on the intensityD of the white noise. This fact
seems not to have been noted before. We then went o
explore whether in fact this resonance is observed in a p
cess defined by the Doering-Gadoua model with no wh
noise from the outset, and found that there is no resona
for such a model. We explained this apparent contradict
by noting a discontinuity in theD→0 limit of the problem
and by presenting a modified set of boundary conditions
does lead to a resonance~precisely the Doering-Gadoua res
nance! in the absence of white noise.

In order to obtain a result for the escape time in the Bi
Astumian model that captures the resonant behavior,
found that we had to retain terms in our solutions to o
power higher ing than had been done previously~the lower
orders yielded only the kinetic approximation! @7#. With this,
we identified the resonant frequency and escape times a

g res;
y0

3/2

2L2D1/2
e2y2/2D ~64!
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and ~more complete results are found in Sec. V!

T̃res;
2L2D

y2
2

ey2 /D. ~65!

We noted that in this case both the resonance frequency
the mean first passage time at the resonance frequenc
pend on the intensity of the white noise, as does their pr
uct. At resonance the escape over the barrier occurs prim
when the barrier is at its lowest. We also noted that
dependence on the flipping rate, especially for high barri
is very flat: there is a broad range of flipping rates wh
passage over the barrier occurs primarily when the barrie
low. In this broad range of flipping rates the escape time o
the high barrier is so long that the barrier is likely to flip
its lower height before the escape is completed.

We also discussed the fact that the resonant activa
phenomenon does not require a fluctuating barrier — it a
occurs if the barrier oscillates periodically between the h
and low values. The behavior of the escape time at low
high oscillation periods is the same as in the dichotom
fluctuation case, and at intermediate oscillation period
resonance effect is also observed.

Finally, we note that our analysis does not address
case of Gaussian barrier fluctuations, that is, of Ornst
Uhlenbeck barrier fluctuations@11#. The results for such bar
rier fluctuations with fixed variance@10# should be similar to
our results for dichotomous noise. In particular, the esc
time for the model analogous to that of Doering and Gad
(V050) will show a minimum even in the absence of wh
noise.
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APPENDIX: SURVIVAL PROBABILITY AND FIRST
PASSAGE TIME MOMENTS

The moments of the first passage time fromx50 to x
51 can be obtained from the survival probabilityS(x,t) that
the system evolving according to Eq.~1! ~appropriately
scaled to dimensionless variables! with a reflecting boundary
at x50 and an absorbing boundary atx51 has not left the
interval (0,1) at timet. This survival probability obeys the
following partial differential equation~a detailed derivation
and original references for the survival probability in an
terval terminated by two absorbing boundaries are prese
in Ref. @20#!:

L2S12lLS5a2
]2S

]x2
, ~A1!

whereL is the differential operator

L[
]

]t
1V0

]

]x
2

]2

]x2
. ~A2!
nd
de-
d-
ily
e
s,
e
is
r

n
o
h
d
s
a

e
-

e
a

-

h
-

ed

Note that Eq.~A1! is a second-order partial differential equ
tion in the time variable and a fourth-order partial different
equation in the state variable. Therefore, two initial con
tions and four boundary conditions are needed to solve
The initial conditions are

S~x,0!51, ~A3!

]S

]t U
t50

50. ~A4!

For the absorbing trap atx51, the boundary conditions rea

S~1,t !50, ~A5!

SL1V0

]

]x
2V0

21a2D ]S

]x U
x51

52V0d~ t !, ~A6!

and for the reflecting boundary atx50 they are

]S

]x U
x50

50, ~A7!

S ]

]t
2

]2

]x2D Sux5050. ~A8!

The first passage time momentsTn are related to the surviva
probability according to

Tn~x!5nE
0

`

tn21S~x,t !dt. ~A9!

Clearly T0(x)51 by normalization.T1(x) is the mean first
passage time to 1 for a process that starts atX(0)5x; T2(x)
is the second moment of the distribution, so that the varia
of the distribution of mean first passage times iss2[T2

2T1
2.

Equations for the first passage time moments can be
tained by multiplying Eq.~A1! by tn21 and integrating over
time by parts. The following recursive-differential equatio
is easily found:

LD
2 Tn22lLDTn2a2

d2Tn

dx2
5gn , ~A10!

where

gn[n~2l22LD!Tn212n~n21!Tn22 , ~A11!
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andLD is the Fokker-Planck operator,

LD[2V0

d

dx
1

d2

dx2
, ~A12!

with T21[0. The boundary conditions can be obtained
rectly from those of the survival probability:

~1! Tn~1!50, ~A13!
ev

ys
-

-

~2! SLD2V0

d

dx
1V0

22a2D dTn

dx U
x51

52n
dTn21

dx U
x51

1V0dn,1 , ~A14!

~3!
dTn

dx U
x50

50, ~A15!

~4!
d2Tn

dx2 U
x50

52nTn21~0!. ~A16!
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